Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Adv ; 3(15): 6179-6190, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979502

RESUMO

Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.

2.
Adv Mater ; 34(40): e2203366, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679599

RESUMO

Plasmonic nanoparticles that can be manipulated with magnetic fields are of interest for advanced optical applications, diagnostics, imaging, and therapy. Alignment of gold nanorods yields strong polarization-dependent extinction, and use of magnetic fields is appealing because they act through space and can be quickly switched. In this work, cationic polyethyleneimine-functionalized superparamagnetic Fe3 O4 nanoparticles (NPs) are deposited on the surface of anionic gold nanorods coated with bovine serum albumin. The magnetic gold nanorods (MagGNRs) obtained through mixing maintain the distinct optical properties of plasmonic gold nanorods that are minimally perturbed by the magnetic overcoating. Magnetic alignment of the MagGNRs arising from magnetic dipolar interactions on the anisotropic gold nanorod core is comprehensively characterized, including structural characterization and enhancement (suppression) of the longitudinal surface plasmon resonance and suppression (enhancement) of the transverse surface plasmon resonance for light polarized parallel (orthogonal) to the magnetic field. The MagGNRs can also be driven in rotating magnetic fields to rotate at frequencies of at least 17 Hz. For suitably large gold nanorods (148 nm long) and Fe3 O4 NPs (13.4 nm diameter), significant alignment is possible even in modest (<500 Oe) magnetic fields. An analytical model provides a unified understanding of the magnetic alignment of MagGNRs.


Assuntos
Ouro , Nanotubos , Ouro/química , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Nanotubos/química , Polietilenoimina , Soroalbumina Bovina
3.
Soft Matter ; 17(20): 5116-5121, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33972959

RESUMO

The splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds.

4.
Angew Chem Int Ed Engl ; 60(8): 3912-3917, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33135279

RESUMO

Recently, N-heterocyclic carbenes (NHCs) are explored as anchor groups to bind organic ligands to colloidal gold (i.e. gold nanoparticles, Au NPs), yet these efforts are confined to non-conjugated ligands so far-that is, focused solely on exploiting the stability aspect. Using NHCs to link Au NPs and electronically active organic components, for example, conjugated polymers (CPs), will allow capitalizing on both the stability as well as the inherent conductivity of the NHC anchors. Here, we report three types of Br-NHC-Au-X (X=Cl, Br) complexes, which, when used as starting points for Kumada polymerizations, yield regioregular poly(3-hexylthiophenes)-NHC-Au (P3HTs-NHC-Au) with narrow molecular weight distributions. The corresponding NPs are obtained via direct reduction and show excellent thermal as well as redox stability. The NHC anchors enable electron delocalization over the gold/CP interface, resulting in an improved electrochromic response behavior in comparison with P3HT-NHC-Au.

5.
ACS Appl Mater Interfaces ; 12(35): 38976-38988, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805918

RESUMO

Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.


Assuntos
Glicogênio/química , Nanopartículas/química , Resinas Acrílicas/química , Amilases/metabolismo , Animais , Glicogênio/metabolismo , Humanos , Fígado/metabolismo , Tamanho da Partícula , Peptídeo Hidrolases/metabolismo , Ratos , Propriedades de Superfície , Temperatura
6.
ACS Appl Mater Interfaces ; 11(31): 28189-28196, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298836

RESUMO

We demonstrate a novel colloidal self-assembly approach toward obtaining mechanically tunable, cost-efficient, and low-loss plasmonic nanostructures that show pronounced optical anisotropy upon mechanical deformation. Soft lithography and template-assisted colloidal self-assembly are used to fabricate a stretchable periodic square lattice of gold nanoparticles on macroscopic areas. We stress the impact of particle size distribution on the resulting optical properties. To this end, lattices of narrowly distributed particles (∼2% standard deviation in diameter) are compared with those composed of polydisperse ones (∼14% standard deviation). The enhanced particle quality sharpens the collective surface lattice resonances by 40% to achieve a full width at half-maximum as low as 16 nm. This high optical quality approaches the theoretical limit for this system, as revealed by electromagnetic simulations. One hundred stretching cycles demonstrate a reversible transformation from a square to a rectangular lattice, accompanied by polarization-dependent optical properties. On the basis of these findings we envisage the potential applications as strain sensors and mechanically tunable filters.

7.
Phys Chem Chem Phys ; 21(21): 11011-11018, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31089589

RESUMO

In this study, we investigated charge inversion of protein-coated Au nanoparticles caused by the addition of metal ions. The addition of hydrolyzable metal ions (Lewis acids) can induce drastic pH changes and depending on this pH, the metal ions (e.g. M3+) are readily converted into the hydrolyzed species (MOH2+, M(OH)2+) or even into hydroxides (M(OH)3). Adsorbed metal hydroxides were identified to cause the charge inversion of the NPs by using a combination of cryo-TEM, EFTEM and ζ-potential measurements.

8.
ACS Appl Mater Interfaces ; 11(14): 13752-13760, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30874424

RESUMO

For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO2) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes.

9.
Environ Pollut ; 242(Pt B): 1850-1859, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30061083

RESUMO

Silver nanomaterials (AgNMs) are released into sewers and consequently find their way to sewage treatment plants (STPs). The AgNMs are transformed en route, mainly into silver sulfide (Ag2S), which is only sparingly soluble in water and therefore potentially less harmful than the original AgNMs. Here we investigated the toxicity and fate of different sulfidized AgNMs using an exposure scenario involving the application of five different test materials (NM-300K, AgNO3, Ag2S NM-300K, Ag2S NM and bulk Ag2S) into a simulated STP for 10 days. The sewage sludge from each treatment was either dewatered or anaerobically digested for 35 days and then mixed into soil. We then assessed the effect on soil microorganisms over the next 180 days. After 60 days, a subsample of each test soil was used to assess chronic toxicity in oat plants (Avena sativa L) and a potential uptake into the plants. The effect of each AgNM on the most sensitive test organism was also tested without the application of sewage sludge. Although Ag sulfidized species are considered poorly soluble and barely bioavailable, we observed toxic effects on soil microorganisms. Furthermore, whether or not the AgNM was sulfidized before or during the passage through the STP, comparable effects were observed on ammonium oxidizing bacteria after sewage sludge application and incubation for 180 days. We observed the uptake of Ag into oat roots following the application of all test substances, confirming their bioavailability. The oat shoots generally containing less Ag than the roots.


Assuntos
Nanopartículas Metálicas/toxicidade , Raízes de Plantas/efeitos dos fármacos , Compostos de Prata/toxicidade , Nitrato de Prata/toxicidade , Poluentes do Solo/toxicidade , Disponibilidade Biológica , Corantes , Nanoestruturas/toxicidade , Esgotos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
10.
Curr Med Chem ; 25(35): 4553-4586, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29852857

RESUMO

Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.


Assuntos
Materiais Revestidos Biocompatíveis/química , Coloides/química , Nanopartículas/química , Materiais Revestidos Biocompatíveis/metabolismo , Dextranos/química , Humanos , Polieletrólitos/química , Polietilenoglicóis/química , Álcool de Polivinil/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo
11.
ACS Omega ; 2(10): 7305-7312, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023545

RESUMO

Enzyme-catalyzed controlled radical polymerization represents a powerful approach for the polymerization of a wide variety of water-soluble monomers. However, in such an enzyme-based polymerization system, the macromolecular catalyst (i.e., enzyme) has to be separated from the polymer product. Here, we present a compelling approach for the separation of the two macromolecular species, by taking the catalyst out of the molecular domain and locating it in the colloidal domain, ensuring quasi-homogeneous catalysis as well as easy separation of precious biocatalysts. We report on gold nanoparticles coated with horseradish peroxidase that can catalyze the polymerization of various monomers (e.g., N-isopropylacrylamide), yielding thermoresponsive polymers. Strikingly, these biocatalyst-coated nanoparticles can be recovered completely and reused in more than three independent polymerization cycles, without significant loss of their catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...